

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :Probability & Statistics (18HS0835)	Course & Branch: MCA
Year & Sem: I-MCA & I-Sem	Regulation: R18

Unit 1 (Probability & Random Variables)

1.									(iii) Independent events then find	6 M
	(i)	P(A	$\cup B)($	ii) P	$(A^{c} \cap$	B) (iii	P(A)	$A \cap B^{\circ}$	(iv) $P(A^c \cap B^c)$	6 M
2.	(a) Stat	te and	Prove	e Add	ition	theore	m on	Proba	ability	6 M
	(b) Stat	te and	l Prov	e Mul	tiplica	ation t	heore	m of	Probability.	6 M
3.	(a) The	prob	abiliti	es tha	t stud	ents A	A, B, (C, D s	olve a problem are $1/3$, $2/5$, $1/5$ and $1/4$	ł
	respect	ively.	. If all	of th	em tr	y to s	olve t	he pro	oblem, what is the probability that the pr	oblem is
	solved.									6 M
	(b) A (can hi	it a tar	get 3	times	in 5 s	shots,	B hit	s target 2 times in 5 shots, C hits target 3	times in
	4 shots	. Find	l the p	robab	ility o	of targ	et bei	ng hit	when all of them try.	6 M
4.	State an	nd Pro	ove Ba	aye's	theore	em				12 M
5.	In a bo	olt fac	tory r	nachi	nes M	[1, M2	2, M3	s man	ufacture 20%, 30% and 50% of the tota	l of their
	output	and 6	5%, 3%	6 and	2% a	re def	ective	e. A b	olt is drawn at random and found to be d	efective.
	Find th	ne pr	obabil	ities	that i	t is r	nanuf	acture	ed from (i) Machine M1 (ii) Machine	M2 (ii)
	Machir	ne M3	3.							12 M
6.	A busi	ness 1	nan g	oes to	hote	ls X,	Y, Z,	20%,	, 50%, 30% of the time respectively. It is	s known
	that 5%	6,4%	, 8% (of the	room	s in X	X, Y, Z	Z hote	els have faulty plumbings. What is the pr	obability
	that bu	siness	s man'	s root	m hav	ing fa	ulty p	olumb	ing is assigned to hotel z.	12 M
7.	(a) Th	e proł	oabilit	y den	sity fu	inctio	n of a	varia	te X is as follows:	
	х	-3	-2	-1	0	1	2	3		
		17	0.1	17	0.0	017	0.4	017		
	p(x)	K	0.1	K	0.2	2K	0.4	2K		
	Determ	nine (i	i) K (i	i) <i>P(</i>]	X < 1	$P(\lambda$	<pre>Z > 1)</pre>	and	P(0 < X < 3) (iii) The distribution function	n (iv)

Determine (i) K (ii) P(X < 1), $P(X \ge 1)$ and $P(0 < X \le 3)$ (iii) The distribution function (iv) Mean, Variance and Standard Deviation 6 M

(b) For the following probability distribution

Х	-3	-2	-1	0	1	2	3
p(x)	0.001	0.01	0.1	0.2	2K	0.4	2K

Then find (i) K (ii) Mean and Variance (iii) $E(X^2+2X+3)$

8. (a) A sample of 4 items is selected at random from a box containing 12 items of which 5 are defective. Find the expected number of defective items and variance of defective items. 6 M

Probability & Statistics

(b) Let X and Y be the independent variables with E(X) = 3, E(Y) = 10, $E(X^2) = 25$, $E(Y^2) = 164$ then find (i) E (3X+Y-8) (ii) E(2X-3Y+7) (iii) V(X) and V(Y) (iv) V(3X+Y-8) and V(2X-3Y+7) (iii) V(X) and V(Y) (iv) V(3X+Y-8) (iv) V(2X-3Y+7) (iv) (iv) V(3X+Y-8) (iv) V(3X+Y-8) (iv) V(2X-3Y+7) (iv) V(X) (iv) V(3X+Y-8) (iv) V(X) (i

9. (a) The probability density f(x) of a continuous random variable is given by $f(x) = \begin{cases} k(1-x^2), \text{ for } 0 < x < 1 \\ 0, \text{ elsewhere} \end{cases}$ (i) Find k (ii) Find the probability between 0.1 and 0.2 (iii) greater

than 0.5

6 M

(b) For the continuous probability function $f(x) = k x^2 e^{-x}$ when $x \ge 0$, find (i) k (ii) Mean (iii) Variance 6 M

- 10. A continuous random variable has the probability density function $f(x) = k e^{-|x|}, -\infty < x < \infty$ (i) Find k (ii) Mean and Variance (iii) Find the probability that the variate lies between 0 and 4 (iii) greater than 0.5 12 M
- 11. The probability density f(x) of a continuous random variable is given by

$$f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0\\ 0, & \text{for } x \le 0 \end{cases}$$
, find the probabilities that it will take on a value

(i) between 1 and 3 (ii) greater than 0.5

Unit-2 (Distributions)

1	Find the Mean and Variance of the Binomial distribution	12 M
2	(a)Ten coins are thrown simultaneously. Find the probability of getting at least seven hea(b) The mean and variance of a binomial variable X with parameters n and p are 16 and	
	(b) The mean and variance of a binomial variable X with parameters if and p are 10 and $P(X \ge 1)$ and $P(X > 2)$	0. I'lliu
2		6 M
3	(a) In a binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 are 0.4096 and 0.2048. Find the parameter 'p' of the distribution.	success 6 M
	(b) Out of 800 families with 5 children each, how many would you expect to have (i) 3 b	
	5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls.	6 M
4	Find the Mean and Variance of the Poisson Distribution	12 M
5	(a) 2 % of the items of a factory are defective. The items are packed in boxes. What	
	probability that there will be (i) 2 defective items (ii) at least three defective items in a 100 items.	box of 6 M
	(b) A hospital switch board receives an average of 4 emergency calls in a 10 minute i	
	What is the probability that (i) there are at most 2 emergency calls in a 10 minute inte	
	there are exactly 3 emergency calls in a 10 minute interval.	6 M
6	(a) If a Poisson distribution is such that $P(X=1) \frac{3}{2} = P(X=3)$ then find (i) P	$(X \ge 1)$
	(ii) $P(X \le 3)$ (iii) $P(2 \le X \le 5)$	6 M
	(b) If x is a Poisson variate such that $3p(x=4) = \frac{1}{2}p(x=2) + p(x=0)$ find (i) the me	an of x
7	(ii) $P(X \le 2)$	6 M
7	Find the Mean and Variance of a Normal Distribution	12 M
8	(a) What are the main Characterstic equations of the Normal Distribution	6 M
	(b) For a normally distributed variate with mean 1 and standard deviation 3, f	ind the
	probabilities that (i) $3.43 \le x \le 6.19$ (ii) $-1.43 \le x \le 6.19$	6 M
9	(a) In a Normal distribution, 7% of the items are under 35 and 89% are under 63. Find the	
	and standard deviation of the distribution. (b) If X is a normal variate, find the area A (i) to the left of $z = -1.78$ (ii) to the right of z	6 M = -1 45
	(iii) corresponding to $-0.8 \le z \le 1.53$	
10	The marks obtained in Mathematics by 1000 students is normally distributed with mean	6 M
10	78% and standard deviation 11%.Determine	
	(i) How many students got marks above 90%	
	(ii) What was the highest mark obtained by the lowest 10% of the students	103-
11	(iii) Within what limits did the middle of 90% of the students lie.Given that the mean heights of the students in a class is 158 cms with standard deviation	12 M
11	cms. Find how many students heights lie between 150 cms and 170 cms, if there a	
	students in the class	12 M

Probability & Statistics

Unit-3 (Basic Statistics)

					L	5111-5	(Das	sic Sta	1131	103)								
1.	(a) Defin	ie Morr	ients	, Skev	<i>w</i> ness	and K	Kurto	sis									6 N	Л
	(b) Find	Pearso	on's c	oeffic	cient c	of skev	vnes	s for t	he	follo	wing	g data					12	М
	Class	10)-19	20-2	29	30-39) 4	40-49		50-	59	60-69	9 7	70-7	79	80-89	9	
	Frequen	cy 5		9		14	2	20		25		15	8	3		4		
2.	Calculate	e the m	ediar	n, qua	artiles	and t	he q	uartile	e co	oeffi	cient	of ske	ewne	ess f	fron	n the f		0
	data													•			12	
	Weights(70-8		0-90	90-10		100-11	.0		0-120		0-13			-140	140-	150
	No. of per	rsons	12	1	.8	35	4	42		50		45			20		8	
		_		_		_	_	_		_			_	_				
3.	Compute	$\frac{1}{2}$ the q							con								12	
		X	3-7		8-12	13-17		18-22			-27		-32		33-	37	38-4	2
		f	2	1	.08	580		175		80		32			18		5	
		_																
4.	Psycholo	0			0			0		-								
	Here is a (E.R). Ca			-	-			-	ten	iiger	ice ra	atio (I	. к)	and	eng	gineer	ing ra	
	(1.11). Ca	liculate	, the t		ICICIII	. 01 001	i i cia										12	1*1
	[Stude	nts	A	В	С	D	Е	Т	F	G	Н	Ι	I				
	-	I.R		105	104	102	10		0	99	98	96	93	92	2			
	-	E.R		103	104	102	98			96	104		97	94				
	Į			101	105	100	70			70	104	12	,,					
5.	Find the	rank of	orrele	ution f	or the	follow	vina	data									12	М
5.			Ji cia		or the	101101	, ing (Jala									12	141
		Х	56	5 42	2 7	72 3	36	63	4′	7	55	49	38	3				
		У	14	17 1'	25 1	160 1	118	149	12	28	150	145	11	5				
6.	Find the	Correl	ation	coeff	icient	betwee	en x	and y f	froi	m th	e give	en data	a				12	Μ
			v	78	89	97	69	9 59)	79	68	57	7					
			X															
			У	125	5 137	/ 130	5 11	12 10	, /	138	3 12	10	0					
7.	(a) If θ i	is the a	ngle	betw	een tł	ie two	regr	ression	n li	nest	then	show	that	-				
	— 1	$-r^2$	$\sigma_x \sigma_x$	v							~		-	4				_
	$Tan\theta = \frac{1}{2}$	$r \cdot \overline{\sigma}$	$\frac{1}{r_x^2 + c}$	$\frac{1}{5}$, F	Explai	n the s	ignif	ïcance	wl	hen	r = 0	and	$r = \pm$:1			6 N	Л
		-	л	у														
	(b) For tw	vo ranc	v mot	variał	oles x	and y	with	the sa	am	e me	ean, t	he tw	o re	gres	sio	n lines	are	
								h 1	~									
	y = ay	x + b ar	nd x =	= cy -	+ d. Sł	how tł	ıat	$\frac{v}{d} = \frac{1}{1}$	<u>- u</u>									
								<i>u</i> 1-	- C								6 N	Λ

8. For the following data determine (i)least squares regression line of y on x (ii) y(3) (iii) least squares regression line of x on y (iv) x(4)
 12 M

х	6	5	8	8	7	6	10	4	9	7
у	8	7	7	10	5	8	10	6	8	6

9. Establish the formula $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$, Hence calculate r from the following data 12 M

Х	21	23	30	54	57	58	72	78	87	90
у	60	71	72	83	110	84	100	92	113	135

(a) Define lines of regression and regression coefficients (i) x on y (ii) y on x 6 M 10.

(b) The two regressions of the variables x and y are x = 19.13 - 0.87 y and y = 11.64 - 0.50 x.

Find (i) mean of x's (ii) mean of y's (iii) the correlation coefficient between x and y . 6 M

Unit-4 (Curve Fitting &Test of Hypothesis)

- (a) Find the normal equations for a straight line by using the method of least squares
 (b) Find the normal equations for a second degree parabola by using the method of least squares
 6 M
- 2. By the method of least squares find the straight line that best fits from the following data

	Х	0	5	10	15	20	25
	У	12	15	17	22	24	30
1	(10)						

And also find y(13)

3. Fit a second degree polynomial (or) parabola from the following data by using the method of least squares

Х	0	1	2	3	4
У	1	1.8	1.3	2.5	6.3

And also find y(3.5)

4. Use the method of least squares find the exponential curve $y = ae^{bx}$ from the following data

х	1	5	7	9	12
у	10	15	12	15	21

Also find y(11)

5. Fit the curve $y = ab^x$ from the following data by using the method of least squares

X	2	3	4	5	62
у	8.3	15.4	33.1	65.2	127.4

- 6. (a) Define the null hypothesis, alternate hypothesis
 - (b) In a sample of 1000 people in Karnataka 540 are rice eaters and the rest are wheat eaters. Can we assume that both rice and wheat are equally popular in this state at 1% level of significance? 6 M
- Experience had shown that 20% of a manufactured product is of the top quality. In one day's production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 level and find confidence limits.
 12 M
- 8. (a) the mean and standard deviation of a population are 11795 and 14054 respectively. If n=50 find 95% confidence limits for mean
 (b) In two large populations, there are 30% and 225% respectively of fair haired people. In this

difference likely to be hidden in samples of 1200 and 900 respectively from the two populations. 6 M

6 M

12 M d of

12 M

12 M

QUESTION BANK 2018

- 9. It is claimed that a random sample of 49 tyres has a mean life of 15200 km. This sample was drawn from a population whose mean is 15150 kms and a standard deviation of 1200 km. Test the significance at 0.05 level and also find 95% confidence limits.
 12 M
- 10. (a) The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same Population of S.D 2.5 inches6 M

(b) Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make a large sample test to test the significance of the difference between the means
 6 M

	Mean	S.D	Size of the sample
University A	55	10	400
University B	57	15	100

10 M

UNIT 5 (Test of Significance)

- 1. (a) write about working rule for test of hypothesis for small samples 5 M (b) The mean life of a sample of 25 fluorescent lights bulbs produced by a company is computed to be 1570 Hours with a standard deviation of 120 Hours. The company claims that the average life of the bulbs produced by the company is 1600 Hours. Using the level of significance of 0.05, is the claim acceptable? 5 M 2. (a) A random sample of 10 boys had the following I.Q's 70, 120, 110, 101, 88, 83, 95, 98, 107, 100, Do these data support the assumption of a population mean I.Q of 100?. Find a reasonable range in which most of the mean I.Q. values of samples of 10 boys lie. 5 M 5 M
 - (b) Define Critical region, Type-I and Type-II errors

3. Below are given the gain in weights (in lbs) of pigs fed on two diets A and B

Diet A	25	32	30	34	24	14	32	24	30	31	35	25	-	-
Diet B	44	34	22	10	47	31	40	32	35	18	21	35	29	22

Test if the two diets differ significantly as regards their effect on increase in weight 10 M

4. Two independent samples of 7 items respectively had the following values.

Sample I	11	11	13	11	15	9	12	14
Sample II	9	11	10	13	9	8	10	-

Is the difference between the means of samples significant?

- 5. (a) Pumpkins were grown under two experimental conditions. Two random samples of 11 and 9 pumpkins, show the sample standard deviation of their weights as 0.8 and 0.5 respectively. Assuming that the weight distributions are normal, test the hypothesis that the two variances are equal? 5 M
 - (b) The nicotine in milligrams of two samples of tobacco were found to be as follows. Find the standard error and confidence limits for the difference between the means at 0.05 level. 5M

Sample A	24	27	26	23	25	-
Sample B	29	30	30	31	24	36

6. To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows:

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at 0.05 L.O.S

Probability & Statistics

7. The following figure show the distribution of digits in numbers chosen at random from a telephone directory

Digits	0	1	2	3	4	5	6	7	8	9
Frequency	1026	1107	997	966	1075	933	1107	972	964	853

10 M

Test weather the digits may be taken to occur equally frequently in the directory

8. A pair of dice are thrown 360 times and the frequency of each sum is indicated below

Sum	2	2	3	4	5	6	7	8	9	10	11	12
Freque	ency 8	8	24	35	37	44	65	51	42	26	14	14

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significance? 10 M

On the basis of information given below about the treatment of 200 patients suffering from a disease, state weather the new treatment is comparatively superior to the conventional treatment.
 10 M

	Favourable	Not favourable	Total
New	60	30	90
Conventional	40	70	110

10. Four methods are under development for making discs of a super conduction material. Fifty discs are made by each method and they are checked for super conductivity when cooled with liquid.

	1 st Method	2 nd Method	3 rd Method	4 th Method
Super Conductors	31	42	22	25
Failures	19	8	28	25

Test the significant difference between the proportions of super conductors at 0.05 level. 10 M

Prepared by: Dr. N. Nagendra, Dept. of Mathematics

Probability & Statistics